Co-Sn (Cobalt-Tin)

H. Okamoto

The Co-Sn phase diagram in [Massalski2] was adopted from [1991Ish]. [1993Oka] updated this phase diagram based on [1992Com].

The Co-Sn system was reassessed by [2004Jia], the same author's group as [1991Ish]. The reassessment is based on more recent experimental data including [1992Com] and [1996Lan]. The result is shown in Fig. 1. A new phase, CoSn₃, found by [1996Lan] was added. However, a polymorphic transition in CoSn₃ is shown at 275 °C in Fig. 1 based on [1996Lan]. According to [2004Jia], an ordering phenomenon from β - to α -Co $_3$ Sn $_2$ occurs in the temperature range between 563 and 568 °C. The Co-Sn crystal structure data are given in Table 1.

References

1991Ish: K. Ishida and T. Nishizawa, The Co-Sn (Cobalt-Tin) System, *J. Phase Equilib.*, 1991, **12**(1), p 88-93

1992Com: H. Comert and J.N. Pratt, Constitutional Studies of the Cobalt-Tin System, *Metall. Trans. A*, 1992, **23**, p 2401-2407

1993Oka: H. Okamoto, Co-Sn (Cobalt-Tin), *J. Phase Equilib.*, 1993, **14**(3), p 396-397

1996Lan: A. Lang and W. Jeitschko, Two New Phases in the System Cobalt-Tin: The Crystal Structures of α- and β-CoSn₃, *Z. Metallkd.*, 1996, **87**(10), p 759-764

2004 Jia: M. Jiang, J. Sato, I. Ohnuma, R. Kainuma, and K. Ishida, A Thermodynamic Assessment of the Co-Sn System, *Calphad*, 2004, **28**, p 213-220

Table 1 Co-Sn crystal structure data

Phase	Composition, at.% Sn	Pearson symbol	Space group	Strukturbericht designation	Prototype
(aCo)	0-3	cF4	$Fm\bar{3}m$	A1	Cu
(εCo)	0	hP2	P6 ₃ /mmc	A3	Mg
$\beta \text{Co}_3 \text{Sn}_2$	37-42	hP4	P6 ₃ /mmc	$B8_1$	NiAs
αCo_3Sn_2	40-42	oP20	Pnma		Ni_3Sn_2
CoSn	50	hP6	P6/mmm	B35	CoSn
$CoSn_2$	66.7	<i>tI</i> 12	I4/mcm	C16	Al_2Cu
βCoSn ₃	75	<i>tI</i> 16	I4 _i /acd	•••	
$\alpha CoSn_3$	75	oC32	Cmca		PdSn ₃
(BSn)	100	tI4	I4 ₁ /amd	A5	βSn

Weight Percent Tin

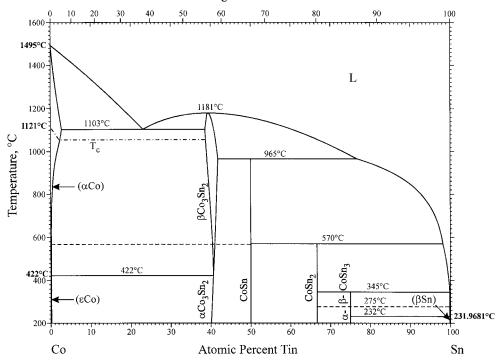


Fig. 1 CoSn phase diagram